Python PDF Processing: Automate Document Workflows

Python PDF Processing: Automate Document Workflows

Automate PDF Processing with Python: Extract, Transform, and Generate Documents

PDFs are everywhere in business—invoices, contracts, reports, forms. Manually processing them wastes hours. Python makes PDF automation accessible, from simple text extraction to complex document generation. Here's how to automate your PDF workflows.

Common PDF Automation Use Cases

  • Extract text and data from invoices
  • Merge multiple PDFs into one
  • Split large documents into sections
  • Fill PDF forms programmatically
  • Convert PDFs to other formats
  • Add watermarks or stamps
  • Generate reports as PDFs
  • OCR scanned documents

Essential Python PDF Libraries

PyPDF2 / PyPDF

Basic PDF manipulation:

  • Merge and split PDFs
  • Extract text (limited formatting)
  • Rotate pages
  • Add watermarks
  • Encrypt/decrypt PDFs

pdfplumber

Better text and table extraction:

  • Extract text with position info
  • Parse tables accurately
  • Handle complex layouts
  • Good for invoices and statements

ReportLab

Generate PDFs from scratch:

  • Create professional documents
  • Add images, tables, charts
  • Full layout control
  • Template-based generation

PyMuPDF (fitz)

High-performance PDF handling:

  • Fast processing
  • Image extraction
  • Text search and highlight
  • Annotation handling

pytesseract

OCR for scanned documents:

  • Extract text from images
  • Works with scanned PDFs
  • Multiple language support
  • Combine with pdf2image

Use Case 1: Invoice Data Extraction

Extract key data from invoice PDFs:

import pdfplumber

def extract_invoice_data(pdf_path):
    with pdfplumber.open(pdf_path) as pdf:
        page = pdf.pages[0]
        text = page.extract_text()

        # Parse for common invoice fields
        data = {
            'invoice_number': find_pattern(text, r'Invoice[:#]?\s*(\w+)'),
            'date': find_pattern(text, r'Date[:]?\s*([\d/\-]+)'),
            'total': find_pattern(text, r'Total[:]?\s*\$?([\d,.]+)'),
            'vendor': extract_vendor_name(text)
        }

        # Extract line items from tables
        tables = page.extract_tables()
        data['line_items'] = parse_line_items(tables)

        return data

Use Case 2: Report Generation

Generate professional PDF reports:

from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Table, Paragraph
from reportlab.lib.styles import getSampleStyleSheet

def generate_report(data, output_path):
    doc = SimpleDocTemplate(output_path, pagesize=letter)
    elements = []
    styles = getSampleStyleSheet()

    # Title
    elements.append(Paragraph("Monthly Sales Report", styles['Title']))

    # Data table
    table_data = [['Product', 'Units', 'Revenue']]
    for item in data:
        table_data.append([item['product'], item['units'], f"${item['revenue']}"])

    table = Table(table_data)
    elements.append(table)

    doc.build(elements)

Use Case 3: PDF Merge and Split

from PyPDF2 import PdfMerger, PdfReader, PdfWriter

def merge_pdfs(pdf_list, output_path):
    merger = PdfMerger()
    for pdf in pdf_list:
        merger.append(pdf)
    merger.write(output_path)
    merger.close()

def split_pdf(input_path, output_dir):
    reader = PdfReader(input_path)
    for i, page in enumerate(reader.pages):
        writer = PdfWriter()
        writer.add_page(page)
        with open(f"{output_dir}/page_{i+1}.pdf", 'wb') as out:
            writer.write(out)

Use Case 4: Form Filling

from PyPDF2 import PdfReader, PdfWriter

def fill_pdf_form(template_path, data, output_path):
    reader = PdfReader(template_path)
    writer = PdfWriter()

    writer.append(reader)
    writer.update_page_form_field_values(
        writer.pages[0],
        data  # {'field_name': 'value', ...}
    )

    with open(output_path, 'wb') as out:
        writer.write(out)

OCR for Scanned PDFs

import pytesseract
from pdf2image import convert_from_path

def ocr_pdf(pdf_path):
    # Convert PDF pages to images
    images = convert_from_path(pdf_path)

    text = ""
    for image in images:
        text += pytesseract.image_to_string(image)

    return text

Integration with Automation Platforms

Connect PDF processing to n8n or Make.com:

  1. Create a Python API endpoint (Flask/FastAPI)
  2. Accept PDF upload or URL
  3. Process and return extracted data
  4. Call from automation workflow

Best Practices

  • Handle errors: PDFs vary wildly in structure
  • Validate outputs: Check extracted data makes sense
  • Use appropriate library: Match tool to task
  • Consider OCR: Scanned PDFs need different approach
  • Test with variety: PDFs from different sources behave differently

Need Custom PDF Automation?

Our Python automation team builds custom PDF processing solutions for businesses—from invoice extraction to report generation.

Contact us to discuss your PDF automation needs.

0 comments

Leave a comment

Please note, comments need to be approved before they are published.